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1. Introduction

The Engset formula is used to determine the blocking proba-
bility in a bufferless queueing system with a finite population of
sources. Applications to bufferless optical networks [6,20,12,14,13]
have sparked a renewed interest in the Engset model and its
generalizations [5]. Sztrik provides a literature review of applica-
tions [18], including multiprocessor performance modelingand the
machine interference problem, in which machines request service
from one or more repairmen. The analysis herein was inspired by
a recent application in sizing vehicle pools for car-shares [4].

The queue under consideration is the M /M /m/m/N queue [10].
This is a bufferless queue with N sources that can request service,
provided by one of m identical servers. When all m servers are in
use, incoming arrivals are blocked and leave the system without
queueing. The Engset formula is used to determine the probabil-
ity P that any random arrival is blocked. The Engset formula is
[11, Equation (62)]

N—-1 UL
P = lim HE n I)VEIlVI(P ) where M(P) = S
r=p 3o (k) (MP)* 1—a(1-P)
fp)
(Engset formula)
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The number of sources N, the number of servers m, and the of-
fered traffic per-source « are given as input. It is worthwhile to
note that subject to some technical assumptions, the Engset for-
mula remains valid under general distributions (i.e. G/G/m/m/N)
[19, Section 5.4].

It is not obvious if any value of P satisfies the Engset formula,
or if multiple values of P might satisfy it. To the authors’ best
knowledge, this work is the first to establish the existence and
uniqueness of a solution (Section 2).

Remark. The limit appearing in the Engset formula is a technical
detail to avoid (for ease of analysis) the removable discontinuity
at P = 1 — 1/a. We mention that f may admit nonremovable
discontinuities at some negative values of P (at which the limit
does not exist), though this does not affect the analysis.

Remark. Let A be the idle source initiation rate, the rate at which a
free source (i.e. one not being serviced) initiates requests, and 1/u
be the mean service time. If P is the blocking probability, M(P) =
A/ . This substitution removes P from the right-hand side of the
Engset formula[11, Equation (70)]. However, A is often unknown in
practice, and hence this method is only applicable in special cases,
or subject to error produced from approximating A.

2. Properties of the Engset formula

If the number of servers m is zero, any request entering the
queue is blocked (P = 1). If there are at least as many servers as
there are sources (m > N), any request entering the queue can
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immediately be serviced (P = 0). Finally, the case of zero traffic
(¢ = 0) corresponds to a queue that receives no requests. We
assume the following for the remainder of this work:

Assumption. mand N are integers withO < m < N.« is a positive
real number.

The following lemmas characterize f defined in the Engset
formula and are used to establish several results throughout this
work:

Lemma 1. f is strictly decreasing on [0, c0).

Lemma 2. f is convexon [1 — 1/, 00) D [1, 00).
Owing partly to Lemma 1, our first significant result is as
follows:

Theorem 3. There exists a unique probability P* satisfying the Engset
formula.

Proofs of these results are given in the Appendix. The proof of
Theorem 3 establishes that f(0) — 0 and f(1) — 1 have opposite
signs. Therefore, P* can be computed via the bisection method on
the interval [0, 1] applied to the map

P+ f(P)—P. (1)

3. Computation

3.1. Fixed point iteration

The literature suggests the use of a fixed point iteration
[9, page 489]. This involves picking an initial guess Py for the
blocking probability and considering the iterates of f evaluated at
Py. Specifically,

Py [0, 1]
P, =f(P,_1) forn> 0. (fixed point iteration)

We characterize convergence in the following result:

Theorem 4. If « < 1and |[f'(0)| < 1, the fixed point iteration con-
verges to P*.

While the first inequality appearing above is a restriction on
the per-source traffic, the second inequality is hard to verify, as it
involves the derivative of f. This inspires the following:

Corollary 5. If « < 1and N > 2m, the fixed point iteration con-
verges to P*.

The condition N > 2m requires there to be twice as many
sources as there are servers, satisfied in most (but not all)
reasonable queueing systems.

Proofs of these results are given in the Appendix.

3.2. Newton’s method

Newton’s method uses first-derivative information in an attempt
to speed up convergence. In particular,

Py € [0, 1]
fPr_1) — Py
f/(Pp—y) — 1

Often, convergence results for applications of Newton’s method are
local in nature: they depend upon the choice of initial guess Py. By
using the convexity established in Lemma 2, we are able to derive
a global result for Newton’s method:

Py =Pp_1— forn > 0. (Newton’s method)

Theorem 6. If o < 1, Newton’s method converges to P*.

Table 1
Comparison under N = 20 and o =

INEN

Servers Probability Number of iterations
m P* Fixed point Newton
1 8.322e—01 6 3
2 6.725e—01 7 3
3 5.235e—01 7 3
4 3.879e—01 8 3
5 2.693e—01 9 3
6 1.714e—01 8 4
7 9.718e—02 8 4
8 4.753e—02 7 4
9 1.947e—02 6 4
10 6.554e—03 5 3
11 1.798e—03 4 3
12 4.005e—04 4 3
13 7.194e—05 3 3
14 1.028e—05 3 3
15 1.142e—06 3 3
16 9.518e—08 3 2
17 5.599e—09 2 2
18 2.074e—10 2 2
19 3.638e—12 2 2
Table 2
Comparison under N = 20 and o = %
Servers Probability Number of iterations
m P* Fixed point Newton
1 9.087e—01 7 3
2 8.187e—01 8 3
3 7.303e—01 9 3
4 6.436e—01 10 3
5 5.591e—01 11 3
6 4.773e—01 11 3
7 3.985e—01 14 3
8 3.235e—01 15 4
9 2.531e—01 16 4
10 1.885e—01 16 4
11 1.310e—-01 14 4
12 8.259e—02 12 4
13 4.527e—02 10 4
14 2.041e—-02 8 4
15 7.124e—03 6 4
16 1.827e—03 5 4
17 3.254e—04 4 3
18 3.623e—05 3 3
19 1.907e—06 3 3

A proof of this result is given in the Appendix. Superficially,
Theorem 6 seems preferable to Corollary 5 as it does not place
restrictions on N or m. In practice, we will see that Newton's
method outperforms the fixed point iteration, and that it performs
well even when o > 1 (Section 4).

4. Comparison of methods

Tables 1-4 compare the performance the fixed point iteration
and Newton's method for a queueing system with N = 20
sources (though we mention that the observed trends seem to hold

independent of our choice of N). The initial guess used is Py = 1.

2
The stopping criterion used is |Ppq1 — Py| < tol = 2724,

Bisection halves the search interval at each step, so that the
maximum possible error at the nth iteration is 27". It follows
that to achieve a desired error tolerance tol, bisection requires
[—lg(tol)] = [—1g(27%%)] = 24 iterations independent of the
input parameters (for this reason, it is omitted from the tables).
The fixed point iteration fails to converge or performs poorly
(sometimes taking hundreds of iterations) precisely when the
sufficient conditions of Corollary 5 are violated. Newton’s method
outperforms both algorithms by a wide margin, often converging
in just a few iterations.
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Fig. 1. Oscillatory nature of the fixed point iteration.

Table 3
Comparison under N = 20 and « = 1. FAIL indicates divergence.
Servers Probability Number of iterations
m P* Fixed point Newton
1 9.523e—01 7 3
2 9.047e—01 8 3
3 8.574e—01 10 3
4 8.102e—01 12 3
5 7.633e—01 14 4
6 7.166e—01 17 4
7 6.702e—01 20 4
8 6.241e—01 25 4
9 5.782e—01 33 4
10 5.327e—01 45 3
11 4.874e—01 79 3
12 4.424e—01 556 4
13 3.976e—01 FAIL 4
14 3.530e—01 FAIL 4
15 3.084e—01 FAIL 5
16 2.636e—01 FAIL 5
17 2.181e—01 FAIL 6
18 1.708e—01 FAIL 7
19 1.187e—01 FAIL 7
Table 4
Comparison under N = 20 and o = 2. FAIL indicates divergence.
Servers Probability Number of iterations
m P* Fixed point Newton
1 9.756e—01 7 3
2 9.512e—01 9 3
3 9.268e—01 10 3
4 9.025e—01 13 4
5 8.781e—01 15 4
6 8.538e—01 19 4
7 8.295e—01 24 4
8 8.053e—01 33 4
9 7.810e—01 54 4
10 7.568e—01 136 4
11 7.325e—01 FAIL 4
12 7.083e—01 FAIL 4
13 6.840e—01 FAIL 4
14 6.597e—01 FAIL 4
15 6.353e—01 FAIL 4
16 6.107e—01 FAIL 4
17 5.859e—01 FAIL 5
18 5.604e—01 FAIL 5
19 5.336e—01 FAIL 5

Insight into the poor performance of the fixed point iteration
is given by Corollary 12 of Appendix, which exploits the oscillatory
nature of the fixed point iteration (see Fig. 1) to derive successively
tighter upper bounds on the number of iterations required for
convergence up to a desired error tolerance.

Remark. Naive implementations computing f (and f’) directly
may take more iterations than necessary due to floating point
error. Lemma 9 of Appendix shows that f is a reciprocal of a
hypergeometric function so that standard computational tech-
niques [16] can be used. A quasi-Newton implementation has been
made available by the authors: https://github.com/parsiad/fast-
engset/releases.

5. A Turan-type inequality

Turan-type inequalities are named after Paul Turan, who proved
the result (L,(x))> > Ly_1(*)L,ys1(x) on —1 < x < 1 for the
Legendre Polynomials {L,}. Such inequalities appear frequently
for hypergeometric functions and are often a direct consequence
of their log-concavity/convexity. There exists a maturing body of
work characterizing the log-concavity/convexity and associated
Turan-type inequalities of generalized hypergeometric functions
(see, e.g., [2,3,8,7]).

The analysis used to prove Lemma 2 gives rise to a new Turan-
type inequality. Letting ,F; denote the ordinary hypergeometric
function [ 1], we have the following result, whose proof is given in
the Appendix:

Theorem 7 (A Turdn-type Inequality). Let b be a positive integer, c a
positive real number, and

h,(x) = 2F1(1 +n, —b 4+ n; c + n; —x).

Then, the map x — hy(x)/(ho(x))? is strictly decreasing on [0, oo)
and

b(c+1)- (hi(x)* = (b—1)c-hyx)hy(x) forx> 0. (2)

6. Future work
Numerical evidence suggests that Lemma 2 can be relaxed:

Conjecture 8. f is convex on [0, 00).

This result would remove the requirement « < 1 from all
claims in this work. In particular, this would yield unconditional
convergence for Newton’s method.
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Appendix. Proofs of results

Let (-)x denote the Pochhammer symbol:

{c (c+1)---(c+X—1), ifXisapositive integer;
1,

ifX =0.
(Pochhammer symbol)

©x =

The ordinary hypergeometric function [ 1] satisfies

2. (a)y (b)y 2%
2Fi(a, by c;2) = Z Mj

= ©Ox X!
ifbe{—1,-2,...} or |z]| < 1. (hypergeometric function)

The Pochhammer symbol can also be used to represent the falling
factorial ¢®:

O =cic=1D-Cc=X+1
= (=0 (=1 (—c + 1) (=1 (e +X = ) (1)
= (=0 (=D¥.

Lemma 9. f (P) defined in the Engset formula satisfies

1/f(P) =F(1,—-m;N—m; 1 —P — 1/a).

Proof. IfP = 1—1/«, the claim is trivial. Otherwise, the reciprocal
of M(P) in the Engset formula is
1I/MP)=—-(1—-P—-1/a). (A1)

We can write the binomial coefficients in the Engset formula in
terms of Pochhammer symbols as follows:

N—1\ (N-1\ m (N—1—-m)!  m™>»
( X )/< m )_X!(N—l— X! (N=m)y

Substituting (A.1) and (A.2) into the reciprocal of f (P) yields

(A2)

1 i mm—X) MX
o) = 2 Wy, (MO
mo
= ——— (1/M(P))*
XX:; (N —m)x
(=m)y X
= —— (1 -P—-1/)".
x;o (N —m)x

The upper bound of summation is relaxed to oo in the last equality
since (—m)x = 0if X > m. The desired result then follows from
multiplying each summand in the series by (1)x/X!=1. O

The following identity should be understood subject to the
convention 0 = 0 - co = 00 - 0 (0o denotes complex infinity):

Lemma 10 (Hypergeometric Binomial Theorem). Suppose b is a
negative integer and c is not an integer satisfying b < ¢ < 0. Then,

o (@)y (b)y 2"

2F1(a,b;c;z+w):Z —Fi(a+Y,b+Y;c+Y;w).

= ©y Y!

Proof. An application of the binomial theorem yields

) > (@ (D)y 2+ w)
oFi(a, b, c;z4+w) = ); 7@){ -

_ = (@x (b)x 1 X (X Y. X-Y
=2 "0, ﬁz(Y)“”

X=0 Y=0

o0

2 & @y by w

iy ); ©x K-

_ i @y (b)y 2" i (@+Y)xy b+ YV)xy w
Y=0 (C)Y Y! X=Y (C + Y)X*Y (X - Y)‘ .

The desired result follows by shifting the index of summation to
X=0 0O

Lemma 10 can also be extended to the case where b is not a
negative integer, but care must be taken to ensure that the various
power series are convergent.

Proof of Lemma 1. To establish this, we show that P — 1/f(P) is
a polynomial with positive coefficients. That is,

L
fP)

An application of Lemma 10 to the form in Lemma 9 reveals that

m
= Z cyPY wherecy > 0. (A.3)
Y=0

Y)
Mg
(N —m)y

wheredy = ,F;(1+Y, —(m—Y); N—m+Y; 1—1/«).To arrive at
(A.3), it suffices to show dy > 0. Another application of Lemma 10
along with the identity

Cy (A4)

c—a)y .. . L.
2Fi(a, =b;c; 1) = © if b is a nonnegative integer
Cp
yields
0 "iy (/) 14+Y),m=¥)? (N—m—1),_y_,
T4 (N—m+Y), (N—m+Y~+2), v,

(A.5)
which is trivially positive. O

The following is found in [8, Lemma 1]:

Lemma 11. Let
N N
AQ) =) axQ* andB(Q) = ) bxQ*
X=0 X=0

be distinct polynomials with nonnegative coefficients satisfying
axbx_1 < ax_1bx for 0 < X < Nandby > Ofor0 < X < N.
Then, the map Q — A(Q)/B(Q) is strictly decreasing on [0, co).

Proof of Lemma 2. The derivative of the hypergeometric function
is

0 ab
aszl(a, b;c;z) = —oFi(a+1,b+ 1, ¢ + 1; 2).
y4 C

This fact combined with the representation in Lemma 9 yields

(A.6)

m AP+ 1/a — 1)

f/(P)=_N—mB(P+]/a—1)

(A7)

where
AQ) =2F (2, —(m—-1);N—-m+1;-Q)
and B(Q) = GFi(1, —=m; N — m; —Q))*.
To arrive at the desired result, we seek to show that the map
Q — A(Q)/B(Q)

is strictly decreasing on [0, 00).

(A8)
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For notational succinctness, let S = N — m. We can write Eq.
(A.8) as a quotient of polynomials by noting that
m—1 x)
X+1H@m-1)
AQ) =3 XFDI =D ox
= S+ Dy

and (expanding using the Cauchy product)

m®) m*=v

m 0
B(Q):(Z GR ) ZQ Z(s>y Sy’

X=0

We seek to apply Lemma 11 on the polynomials A and B, whose
coefficients we denote ay and by, respectively. Note that A and B
are distinct since 0 = ay < by form < X < 2m. One can easily
check that a; = aibg < agh; = b;. We thus need only verify
axbx_l < ax_]bx forX > 1.

Fix X > 1.1t is easy to check that

1_{_1 m—X
axy =ax_1| = .
X x-1\ ¥ STX

Using Gauss summation, we can rewrite by as

m(X/2)>2 [X=1)/2] m®) m&=1
(S)X/Z Y=0 (S)Y (S)X—Y .

Suppose X is even. Then,

b 2 <1 + 1> m-X Xi? o
axbx—1 = 20ax—1 | & i — 7 —
X S +X Y=0 (S)Y (S)X,Y,]

1m—=x X231/ m&/2=1 px/2)
XS+X =5 \S)x2-1 O)xp2

bX = I{X is even} (

X271 (V) p&X=Y) )

_l’_ JE—
£ (S)y S)x_y
(m(xm )2 N 2X/2—l m® m&=v ,
= ax—1 — = ax—1bx.
S)x/2 = Sy O)x—y

A similar approach can be taken if X is odd. O

Proof of Theorem 3. We first show that (1) < 1, or equivalently,
1/f(1) > 1. By the positivity of (A.5), the map o +— 1/f(P; &) is
strictly decreasing. Passing to the limit and dropping higher order
terms involving 1/ with Z > 0 yields

! > lim ———
fP;a)  a'—oo f(P; ')
_ y Y (N—m—1),_,
- ; (N—m)y (N—m+Y),_y

One can verify that if P = 1, the above sum is exactly one, yielding
1/f(1) > 1(forall 0 < @ < 00), as desired.

By Lemma 1, the map (1) is strictly decreasing on [0, 00).
Furthermore, since f(1) < 1,f(1) — 1and f(0) — 0 > 0 have
opposite signs. Because (1) is also continuous, the desired result
follows by the intermediate value theorem. 0O

Proof of Theorem 4. Let I = [0, 1]. (A.3) establishes that f is pos-
itive on I. Since o < 1, dy appearing in (A.4) satisfies dy > 1. It fol-
lows thatf(0) = 1/dg < 1(see(A.3)).Lettingl = [0, 1], these facts
and Lemma 1 yield f(I) C I. Since f is continuously differentiable
on I, it suffices to show that there exists a nonnegative constant
L < 1such that |f’| < LonI (implying that f is a contraction on I).

Since P + 1/ — 1 > 0 whenever ¢ < 1, (A.7) reveals that
—f" = |f’| on 1. Owing to Lemma 2, f is convex on I so that —f” is
nonincreasing on I. Therefore, |[f'(0)| > |f’| on I, and the desired
result follows by taking L = |f'(0)|. O

Proof of Corollary 5. We begin by considering the case of @ < 1;
o = 1 is handled separately. Recall that the proof of Lemma 2
shows that map (A.8) is strictly decreasing on [0, o). Since 1/« —
1> 0and,F;(a, b;c;0) =1,

m A(l/a —1) m A(0) _m
N—mB(1/a—1) N-mB0O) N-m’
and the desired result follows (N > 2m is equivalent to m/(N —
m) < 1).

Suppose now o = 1. We modify our approach, as the strict
inequality in (A.9) no longer holds. By (A.3) and (A.4),
F(0) = 1/2F(1, —m, N — m; 0) = 1.

This along with the fact that f is strictly decreasing (Lemma 1) and
0 < f(1) < 1 implies that the iterates of f evaluated at some
probability Py (i.e. f¥(Py) for k > 0) reside in [f(1), 1]. We can
thus relax the sufficient condition for convergence in Theorem 4
to |f'(f(1))| < 1inlieuof |f'(0)| < 1. Then
m A (1)) m A(0) _m
N—-mB(f(1)) N—-mB@O) N-m’
and the desired result follows. 0O

o] = (A9)

Let f¥ denote the kth iterate of f. The proof above reveals that
we can replace the condition |[f'(0)| < 1 with [f'(f2(0))| < 1 for
some nonnegative integer k. Owing to this, we derive a relaxation
of Theorem 4 along with a family of bounds (parameterized by
k) on the number of iterations required for convergence up to a
desired error tolerance e:

Corollary 12. Let k be a nonnegative integer and P* denote the
solution of the Engset formula. Suppose & < 1 and

q=f¢f*o)| < 1.

Given 0 < € < 1 and {P,} as defined by the fixed point iteration,
|Pokr¢ — P*| < € whenever

€= [log,(e —eq)].

Proof. (A.3) establishes f(0) > 0 and f2(0) > 0. Using the fact
that f is strictly decreasing (Lemma 1), it follows by induction that

[0, 11 D [f°(0), f1(0)] 2 [f(0), F*(0)] 2

and P,y is in the interval [f2¢(0), f2**+1(0)] for all £ > 0. The con-
traction mapping principle [ 15] characterizes the speed of conver-
gence:

for £ > 0.

q
|Pose — P*| < [Pa+1 — Pak| <
1—q 1

The desired result follows. O

The proof of Theorem 6 requires the following result (a simple
modification of [ 17, chapter 22, exercise 14b]):

Lemma 13. Let [ be an interval and g: I — R be a convex and
differentiable function satisfying g’ < 0 and g(x*) = 0 for some x* in
I. Then, given xy € I with g(xy) > 0, the sequence {x,} defined by

Xn = X1 — &(Xn-1)/8 (Xu—1) forn >0
converges from below (i.e. xg < x; < ---)toXx*.

Proof. Since g(xo) > 0 and g’(xg) < 0, it follows that xo < x.
Since (x1, 0) is on a tangent line of g and a convex function lies
above its tangent lines, g(x;) > 0. Hence, x; < x*. Repeating this
argument establishes xg < x; < --- < x*.

It follows that x, — x for some x in I. Taking limits on both
sides of g’ (xp—1) (Xn—1 — Xn) = g(x,_1) and using the facts that g is
continuous and g’ is monotone due to the assumption of convexity,
we arrive at g(x) = 0. Since a strictly decreasing function cannot
have two distinct roots, x = x*. O
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Proof of Theorem 6. First, consider the case f(Pj)) — Py > O.

Lemma 1 implies that f* < 0and hencef’ — 1 < OonlI = [0, 1].

Lemma 2 establishes that f is convex on I. Theorem 3 guarantees

the existence of P* in I such that f (P*) — P* = 0. Lettingg: I — R

be defined by g(P) = f(P) — P, we can directly apply Lemma 13.
Now, consider the case of f (Py) — Py < 0. Note that

_ f(Po) =Py _ f(Po) +Po If"(Po)| =0
frPy—1 " 1+ |f'(Po)l

Since the point (Pq, 0) is on a tangent line of P — f(P) — P and
a convex function lies above its tangent lines, f (P;) — P; > 0. We
can now repeat the argument in the first paragraph with the initial
guess P in lieu of Py. O

P, = Py

Proof of Theorem 7. That x > hq(x)/(ho(x))? is strictly decreas-
ing follows directly from the proof of Lemma 2. The derivative of
this map is C(x)/(ho(x))? where
C(x) = —2hi1(X)hy(x) + ho(X)h) (x)

2b 2(b—-1)
—— (M®)* + ———ho()hy(x)

c c+1

(the last equality is a consequence of (A.6)). Since hy is positive on
H = [0, 00), it follows that C is nonpositive on H, yielding (2). O
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